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Abstract The non-stationary heat conduction in an infinitely long solid cylinder with a time-dependent 
boundary heat flux is studied for a material with a non-vanishing thermal relaxation time. An analytical 
solution of the hyperbolic energy equation together with its boundary and initial conditions is obtained by 
the Laplace transform method. The temperature distribution and the heat flux density distribution are 
studied both for a constant boundary heat flux and for an exponentially decaying boundary heat flux. The 
compatibility of these distributions with the local equilibrium hypothesis is analysed. © 1997 Elsevier 

Science Ltd. 

INTRODUCTION 

In the last decades, one of  the most interesting results 
obtained in the field of  heat transfer in solid media is 
the evidence that discrepancies between Fourier 's  law 
and experimental results may occur in highly non- 
stationary phenomena. Experimental analyses of  the 
inadequacy of  Fourier 's  law, when very rapid changes 
of  temperature or of  heat flux occur, were performed 
both at very low temperatures [1, 2] and at room 
temperatures [3, 4]. When Fourier 's  law cannot be 
applied, a theoretical description of  the heat con- 
duction process can be provided by the Cattaneo 
Vernotte constitutive equation [5 7] 

~q 
q + z ~  = - k V T .  

Equation (1) reduces to Fourier 's  law when the term 
aq/& can be neglected with respect to q. In other 

words, equation (1) predicts that Fourier 's  law holds 
when relevant changes of  the heat flux density occur 
only in time intervals much greater than z. The ther- 
mal relaxation time z is a property of  the material and 
is estimated to range from 10 14 s for aluminium at 
high temperatures to 103 s for biological tissue at cryo- 
genic temperatures [8]. 

For  a solid with constant mass density and such 
that du = c dT, the local energy balance equation can 
be written as 

0T 
V ' q + p c ~  = O. 

~t 

As a consequence of  equations (1) and (2), the tem- 
perature field of  a solid with constant values of  p, c, k 
and z must fulfil the differential equation 

c3T 02T 
~V 2 T = ~ -  + r 012 (3) 

Equation (3) is a hyperbolic equation which predicts 
that a temperature change propagates as a damped 
wave with a speed x / ~ .  

Many solutions of  equation (3) for plane thermal 
waves are available in the literature. On the other 
hand, few papers deal with the propagation of  cyl- 
indrical thermal waves. In particular, Wilhelm and 
Choi [9] describe the evolution of  the temperature 
field in an infinite solid medium starting from a delta- 
like temperature distribution centred on a line. Hector  
et al. [10] study the hyperbolic heat conduction in an 
infinitely wide plane slab with an insulated surface 

(1) and a heated surface. They consider a non-stationary 
and axisymmetric distribution of  the heat flux density 
on the heated surface. In ref. [11], the onset of  res- 
onance phenomena for the temperature field in a cyl- 
indrical electric resistor carrying a steady-periodic cur- 
rent is analysed. In ref. [12], the thermal waves 
generated in an infinite solid medium by a cylindrical 
hot wire which provides a non-stationary heat flux are 
studied. For  this system, it is shown that the tem- 
perature field can violate the hypothesis of  local ther- 
modynamic equilibrium [12]. 

The aim of the present paper is to study the tem- 
perature field and the heat flux density distribution in 
an infinitely long solid cylinder with a non-stationary 
boundary heat flux. Particular attention will be 
devoted to the case of  a step change of  the boundary 
heat flux and to the case of  an exponentially decaying (2) 
boundary heat flux. The following novel feature of  
hyperbolic heat conduction will be pointed out. When 
a sudden and finite change of  the heat flux density is 
prescribed at the boundary of  a solid cylinder, both 
the temperature field and the heat flux density present 
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NOMENCLATURE 

an dimensionless coefficients employed 
in the Appendix 

B({, ~o, A) dimensionless function defined 
by equation (27) 

c specific heat [J (kg K) l] 
g(tl) dimensionless function employed in 

the Appendix 
F(t)  = q(ro, t)/qo, dimensionless function 
L modified Bessel function of first kind 

and order v 
J,, Bessel function of first kind and 

order v 
= x f ~ l ,  imaginary unit 

thermal conductivity [W (m K) l] 
non-negative integer number 
Laplace transformed variable 
heat flux density [W m -2] 
radial component of q [W m 2] 
reference value of the heat flux 
density [W m 2] 

Q~ heat supplied to the cylinder per unit 
length in the time interval 
[0, + oo1, [J m i1 

Res{ ;} residue of a complex analytic 
function at a pole 

Re{ } real part of a complex number 
r radial coordinate [m] 
r0 radius of the cylinder [m] 
s entropy per unit mass [J (kg K)-~] 
t time Is] 
tp constant time employed in equation 

(49) [s] 
T temperature [K] 
To initial temperature [K] 
u internal energy per unit mass 

[J kg ~] 
U unit step function 

i 
k 
?1 

P 
q 
q 

qo 

real variable employed in the 
Appendix. 

Greek letters 
thermal diffusivity [m 2 S 1] 

ft. nth real non-negative root of 
equation Jj(fl) = 0 

/3 = i v y ~ 2 ,  complex variable 
~, constant employed in the inversion 

formula (20) 
complex variable employed in 
equation (24) 

rl = r/ro, dimensionless radial 
coordinate 

0 dimensionless temperature defined in 
equation (8) 

A = c~r/(4r2), dimensionless thermal 
relaxation time 

2.,/~n dimensionless parameters defined in 
equation (22) 

~ = ~t/(4r2),  dimensionless time 
II dimensionless parameter defined in 

equation (50) 
p mass density [kg m 3] 
~r entropy production rate per unit 

volume [W (m 3 K-1)] 
r thermal relaxation time [s] 
q) dimensionless function of ~ and A 

defined by equation (11) 
){ dimensionless heat flux density 

defined in equation (8) 
~o complex variable employed in 

equation (27). 

Superscripts 
Laplace transformed function 

' dummy integration variable. 

singularities. Moreover, an analysis of the com- 
patibility of the solutions of equation (3) with the local 
equilibrium hypothesis will be performed by means of 
the method pointed out in ref. [12] and widely dis- 
cussed in ref. [13]. More severe checks on the validity 
of local equilibrium could be performed according to 
the physical interpretation of hyperbolic heat con- 
duction proposed in the theory of extended irre- 
versible thermodynamics (EIT) [14, 15]. This theory is 
based on a generalized thermodynamic scheme which 
does not employ the hypothesis of local equilibrium 
and predicts a differential equation for the tem- 
perature field more general than equation (3). An 
analysis of the compatibility of the solutions of equa- 
tion (3) with the local equilibrium hypothesis accord- 
ing to E1T is beyond the purposes of this paper. 

GOVERNING EQUATIONS 

In this section, the hyperbolic energy equation and 
its initial and boundary conditions are written in a 
dimensionless form. Then, the dimensionless tem- 
perature field within the cylinder is obtained by 
employing the Laplace transform method. Let us con- 
sider an infinitely long solid cylinder with radius r0. 
Let us assume that the density, the thermal conduc- 
tivity, the thermal diffusivity and the thermal relax- 
ation time of the cylinder are constant. At time t = 0, 
the temperature within the cylinder is uniform with 
value To, while the heat flux density distribution is 
zero. As a consequence, at time t = 0 also OT/St  is 
zero, as it is easily proved by employing equation (2). 
For t > 0, a uniform and time-dependent heat flux 
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q(r0, t) = -qoF( t )  crosses radially the surface r = r0, 
where F(t) is an arbitrary dimensionless function of 
time such that F(0) = 0. Therefore, the temperature 
field within the cylinder must be axisymmetric, so that 
equation (3) can be rewritten as 

~ ~ ( r ~ _T~ c3 T O2 T 
= + ~ - - .  (4) 

The initial and boundary conditions can be expressed 
as 

~ , = 0  
T(r,O) = To = 0 (5) 

& . . . .  = qo F(t)+z t > O. (6) 

Since the temperature field must be regular on the axis 
of the cylinder, an additional constraint is given by 

& ,=o = 0. (7) 

By employing the dimensionless quantities 

k T -  To = __ r c~t ~z 
O =  - -  Z q r / = - -  ~ = - -  A = - -  

roqo qo ro 4r 2 4r~ 

equations (4) (7) yield 

( 0 8 )  lfoO 8zO\ 

00 = 0 0(~,0)=0 ~ = o  

~ ,=, = F(4r2o~/U) + A dF(4rZ~/COd~ - ~(~ '  A) 

(8) 

(9) 

(lO) 

(11) 

(12) ~?0 = 0. 
~ = 0  

The Laplace transform of 0(q, ~) is given by 

~(q,p) = f / ~  e-Pe,9(r/, ~1 d~. (13) 

On account of equation (10) and of the properties of 
Laplace transforms [16]. equations (9), (1 l) and (12) 
can be rewritten as 

d20 + 1 d,9 1 2 - 
dq 2 ~ - ~  - ~ ( p + A p  )O = 0 (14) 

d~ .=, = ~(p,  A) (15) 

~ = o  =°. 
(16) 

The solution of equations (14)-(16) can be expressed as 

~(q, p) = go (7,P)~(P, A) (17) 

where Oo(q,P) is given by 

,90 (t/, p) = 210 ( q ~ / 2 )  (18) 
1, ( ~ / 2 ) x / / ~  Ap 2 

As a consequence of the convolution theorem for 
inverse Laplace transforms [16], the dimensionless 
temperature field can be expressed as 

0(t/, {) = @(~', A)O0 (q, { -  ~') d{'. (19) 

The inversion theorem for Laplace transforms [16] 
yields 

iT+izc 
O°(t/'¢) = 2hi j;. ,~ eP¢(~°Ol'p)dp (20) 

where 7 is any real number  such that the function 
0o(tt, p) is analytic in the half-plane Re{p} > 7. On 
account of equation (18) and of the properties of 
Bessel functions [17], Oo(q,P) can be rewritten as 

&(q,p) J°(@) (21) 
~J,(#) 

where f l = i ~ / 2 .  Therefore, )0(q,P) has infinite 
simple poles for p = 2, and for p = ~,, where 

l 
)., = - ~ ( 1  + x ~ -  16Afl~) 

1 
= - 7 ; , ( l - x / 1 - 1 6 A f l ~ )  n 7> 0 (22) /t, 

and ft, is the nth real non-negative root of equation 
Jl (fl) = 0. On account of the properties of Bessel func- 
tions [17], if ~ - ( 1 - q ) x / A / 2  > 0, the integral on the 
right-hand side of equation (20) coincides with the 
integral of eP¢~o(tt,p) on a semicircular closed path 
which lies to the left of the line Re{p} = 7 and is 
centred at p = 7, provided that the radius of the semi- 
circle tends to infinity. On the other hand, if 
~ - ( 1 - q ) x / A / 2  < 0, the integral on the right-hand 
side of equation (20) coincides with the integral of 
eP~0(q,p) on a semicircular closed path which lies to 
the right of the line Re{p} = ? and is centred at p = 7, 
provided that the radius of the semicircle tends to 
infinity. Therefore, on account of Cauchy's residue 
theorem, equation (20) can be rewritten as 

O0(tt, 4) = U ( ~ -  (1 - q).,/A/2) 

x ~ [Res{ee¢,.q0(q,p);p = )~,} 
n=0 

+Res{er¢0o(q,p) ;p =/~.}]. (23) 
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If ~ - ( 1 - q ) x f A / 2  < 0, equation (23) ensures that 
function ~90(q, +) is zero. Indeed, on account of equa- 
tion (8), the inequality + -  (! - t / )x fA/2  < 0 holds if 

and only if t x / ~  < ro - r. Since x ~  represents the 

speed of thermal waves, the condition t x ~  < r0 - r 
is verified whenever t is not sufficiently large for the 
thermal wave to travel from the boundary  to the given 
position r. By employing equation (21) and the 
properties of Bessel functions [17], one can express 
the residue of eP~0o(t/,p) at any simple pole p = f as 
follows : 

Res{e~+,g0(t/,p);p = f} = Lim 8eV+j°(qfl) 
(2Ap + 1 )J0 (fl)' 

(24) 

c 

-5 

-1( 

-1~ 

-2C 

-2~ 

/ 

~ . / ~  

0'.0~ 0102 0.03 0.04 0.05 o.os 

Fig. 1. Plots of2,,/fi 2 and tt=/fi~ vs Afl~,. 

It can be verified that, if { - ( 1 - t / ) x / A / 2  < 0, the 
infinite sum which appears on the right-hand side of 
equation (23) is zero. Therefore, the term 
U ( ~ - ( 1 - t / ) x / A / 2 )  in equation (23) can be omitted, 
so that equations (22)-(24) yield 

00(~,  ~) = 8(1 - e  ~.'~) 

:~ Jo(t///,__) -" ; d _  ,=¢" 
- 8,,_~1 J0 ( f l ~ ) ~ t e  e ). 

(25)  

Fig. 1. This figure shows that, when A --+ 0, 2,/fi 2 tends 
to - o o ,  while/2,/ft, 2 tends to - 4 .  As a consequence, 
if Fourier 's law holds, i.e. in the limit A --, 0, equation 
(28) yields 

~(t/, ~) = 8 f (4ro~' /~)  d~' 

+~ Jo(t///,) 2 
+ 8,,~__ ~ B ( ~ , 4 / / = , 0 ) .  (29) 

The dimensionless temperature field ~(q,~) can be 
determined by means of equations (19) and (25) and 
can be expressed as 

,9(q, 4) = 8[B(~, 0, A) - B(~, l/A, A)] 

- 8  ~ Jo(t;fi,) 

, - ,  Jo(fl=)~/1 - 16Afl~, 

x [B(~,  - < ,  A)  - B(~ ,  - ]+,,, A)]  

where function B(¢, co, A) is defined as 

B(~, (9, A) = e ''¢ e0'¢'O(¢ ', A) de'. 

On account of equations (11) and (27), equation (26) 
can be rewritten as 

,9(t/, ~) = 8 Jo F(4r2~'/c+) d~' 

-8 ~ Jo(~//=) 
,=, Jo(fi,)x/1 - 16Aft, 2 

x [B(~,  - ; . , ,  A)  - B ( ¢ ,  - ]+,,, A)] .  

Equation (22) implies that, for small values of A, one 
can employ the approximate expressions 2= ~ - 1,/A 
and ~t n ~ - 4//2. A representation of the behaviour of 
2./fl 2 and of/~.///2 for small values of A is reported in 

THE HEAT FLUX DENSITY A N D  THE LOCAL 
EQUILIBRIUM HYPOTHESIS 

In this section, an expression of the dimensionless 
heat flux density is determined. Then, a criterion to 
check the validity of the local equilibrium hypothesis 
is presented. As a consequence of equation (2), the 
local energy balance equation can be expressed as 

(26) 1 ~ 0T 
? j r ( rq )+PC~t  = 0. (30) r 

On account of equation (8), equation (30) yields 

1 ~ 1~[~ 
r/0q (r/X) - 4 c~¢ (31) 

(27) so that the dimensionless heat flux density X is given 
by 

1 ~", c?,9(r/', ~) , ,  , 
X(tl, ~) = - 4t 1 j,, ~¢ t/ at / .  (32) 

Equation (27) implies the following identity : 

aB(~, o,, A) 
- coB(~, ~o, A) +O(~,  A). (33) 

34 

By employing equations (28), (32) and (33), one 
obtains 

(28) 
X(rl, ~) = -- qF(4ro~/~) 

+ 2 ~ / / , j { ,  ( / / 5 ~ i  ~ 16A//, 2, 

x [)..B(~, -- )~., A) - #=B(¢, - #,,, A)]. (34) 
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In the limit A--*0, the approximate expressions 
2, ~ - 1/A and/4, ~ - 4/3, 2 hold, so that equation (34) 
yields 

Z(r/' g) = -F(4r~g/cO[2,~-,/3,JoJ'(tl/3")(fl,,) +r/]  

+8  f /3"J~(q/3")B(~,4/3~,O). (35) 
,,=, Jo(/3,,) 

As it is proved in the Appendix, the following identity 
holds : 

~. J~(q/3,) _ - ~  0~<r /<  1 (36) 
| 
(0 , = ,  

Therefore, equation (35) can be rewritten as 

f ~ ~ /3"J' (vl/3") B({, 4/32,, O) 
¢) = J , , ( /3 , , )  

__ F(4r 2 ~/~) 

0 ~ < q < l  

q = l  

(37) 

It is easily verified that equations (29) and (37) satisfy 
Fourier's law, i.e. Z =-(?O/(?tl, in the open set 
0~<~1<1. 

If the local equilibrium hypothesis holds, any 
sufficiently small volume element of the solid can be 
considered in stable equilibrium, so that the entropy 
flux density is given by q/T  [18]. Therefore, the local 
entropy balance equation can be written as 

(q~ &' 
V ' [ T ) + p ~ =  a (38) 

where a is the local entropy production rate per unit 
volume. 

The local equilibrium hypothesis and the assump- 
tion that the mass density is constant imply that the 
relation du = Tds holds locally. As a consequence, 
equations (2) and (33) yield 

l 
a = - T~ q • VT. (39) 

It is easily proved that the second law and the local 
equilibrium hypothesis imply that a must be non- 
negative [13, 18]. 

On account of equations (8) and (39), within the 
cylinder, the entropy production rate per unit volume 
can be expressed as 

qo 0O 
a = - ~ %&/. (40) 

Indeed, the local equilibrium hypothesis is conceivable 
if, and only if, at every instant of time and at every 
spatial position, Z and OO/Sq either vanish or have 
opposite sign. If  9 and Z are such that at some instant 
of time either E is positive and ,9 increases with q or Z is 

negative and 0 decreases with r/, the local equilibrium 
hypothesis is violated. 

CONSTANT BOUNDARY HEAT FLUX 

In this section, equations (27), (28) and (34) are 
employed to determine the distributions of the dimen- 
sionless temperature and of the dimensionless heat 
flux density, in the case of a constant boundary heat 
flux. At time t = 0, the boundary heat flux changes 
instantaneously from 0 to a non-vanishing constant 
value, so that F(t) = U(t). Therefore, equation (111 
yields qb(~, A) = U(O +A6(~) and equation (27) leads 
to the following expression of B(~, uJ, A ): 

{ (~+A)U(~) (o = 0 

(41) 

On account of equations (22) and (41), equation (28) 
can be rewritten as 

[ 8 ~ + 2  ~ o(,1, ~) = u ( o  ~ Jo(,#L) 
=, Y 0 ( / 3 . ) ~  

Jo(~/3°) , ~ ~ , ~ , ]  +2A  2 n=l ~ ( ] - / n  e'.," --.V, e .  //. 
L jo(/3.)fl2x/1 _ 16Aft"2 J 

(42) 

As it is proved in the Appendix, the identity 

Jo(qfl.) tl 2 1 
(43) 

,,z"=~ Jo (fl,)fl2 4 8 

holds, so that equation (42) can be rewritten as 

O(~, ~) = U(O 

2q2_ 1 x 8 ~ + ~  +2A 2 f J0(r/fin) 

"=' Jo (fl.) fl"2 x~--16Afl~, 

2 ;~ 2 ~ g 1 x (p, e ,, --2,  e ,, ) . (44) 

Equations (34) and (41) yield 

z(~, ~) = - u ( o  

:< J, (q/3,) 

x q+2A,,~,  j o ( / 3 , , ) £ $ ~ 1 6 A / 3 2  

× (g, ,e<~-2,  e",,¢)] (45t 

If Fourier's law holds, i.e. in the limit A --. 0, equations 
(29) and (37) can be employed. Therefore, on account 
of equations (41) and (43), one obtains 

~t(q,~) = U(~) [8~-I- 2q2--~14 - - 2 f  Jo(q/3,,) e 4fl~,¢] 
,,=,/3"2J,,(/3°) j 

(46) 
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~' J l 
2 ~" J '  (q~") • 

Z(t], ~) : - U ( ~ )  if-I- , ,~, f lnjo( f l , ,  ) e 4t~;/ . (47) 

it is easily verified tha t  equat ion  (46) agrees with the 
solution of  Four ier ' s  equat ion  obta ined in Carslaw 
and Jaeger [19] for a solid cylinder with an uniform 
tempera ture  dis t r ibut ion at t = 0 and a cons tan t  
boundary  heat  flux for t > 0. 

For  values of  ~ much  greater than  1, exponential ly 
decaying terms can be neglected in equa t ion  (44). 
Therefore,  a large-time approx imat ion  of  the dimen- 
sionless tempera ture  dis t r ibut ion is given by 

2t/2 - 1 
O(~, ~) = 8~ + - -  (48) 

4 

Equat ion  (48) shows that ,  for large times, the dimen- 
sionless tempera ture  field predicted by the hyperbolic 
heat  conduct ion  equat ion  tends to coincide with tha t  
predicted by Four ier ' s  equat ion.  More  precisely, at a 
given position, the difference between the value of  
the dimensionless tempera ture  evaluated by Four ier ' s  
equat ion  and that  evaluated by the hyperbolic  equa- 
t ion of  heat  conduc t ion  tends to zero when ~ - ,  + oc. 

In Fig. 2, the evolut ion of  0 at fl = 0 for A = 0.1 is 
compared  with the evolution of  ,~ at the same point  
for A = 0. This plot shows that ,  if A = 0.1, the value 
of 0 at q = 0 is zero for ~ < ~ . 1 / 2  ~ 0.158. Indeed, 
the t ime necessary for the thermal  wave to travel f rom 
the boundary  of  the c cylinder to the axis is 
[ = L N / / ~ / ~  , tha t  is ~ = ,v/A/2. Moreover ,  this figure 
shows that  the plot ~9 vs ~ for A = 0 ~ r e s e n t s  two 

/ 
singularities. The first is when ~ = w ' 0.1/2. i.e. when 
the wavefront  of  the tempera ture  field reaches the axis 
of  the cylinder for the first time. The second singularity 
occurs when ~ -  3 x / ~ / 2  ~ 0.474, i.e. when the 
wavefront  of  the tempera ture  field, after having been 
reflected from the bounda ry  of  the cylinder, reaches 

the axis for the second time. 
The singularities of  the tempera ture  field are due to 

the existence of  a step change of  the bounda ry  heat  
flux. Indeed, as it is shown in Fig. 3. the ins tan taneous  
finite change of the bounda ry  heat  flux produces a 
sharp wavefront  both  for 0 and for X- As it is shown 

J 
S 

S ~ 
t 

0,1 0.2 0.3 0.4 0.5 

Fig. 2. Plots of 0 vs ~ tor q = 0 in the case of a constant 
boundary heat flux; the solid line refers to A = 0.1 and the 

dashed line to A = 0. 

1 

0.8 

0.6 

8 
0,4 

0.2 

0 

0 

-0.2 

--0.4 

-0,6 

-O.R 

-1 

% / 
%% / /  

%%% / / j /  

, i 
0.5 0 0.5 

/ '  
/ 

/ 
/ 

/ 
/ /  

/ 
/ 

i / 
/ /  

/ 
/ 

\ 
% 

% 
% 

% 

% 
% 

%% 

0.5 0 0.5 

11 

3. Plots o f  0 and X vs q for ~ = ~/0. t /4  in the case o f  a Fig. 
constant boundary heat flux ; the solid line refers to A = 0.1 

and the dashed line to A = 0. 

in Fig. 4, when  the sharp  wavefront  reaches the axis, 
a singularity arises. If  the finite change of  bounda ry  
heat  flux were performed with cont inui ty,  the 
wavefront  would not  be sharp and  no  singularity 
would appear.  

2 

1 . 8  

1.e 

1.2 

1 o~5 0'.5 

X 
-1.5~ 'I 
-2.5 ' 1 o~5 o ols 

11 

Fig. 4. Plots of ,~ and ;( vs ~1 for ~ = ,,f0_l/2 in the case of a 
constant boundary heat flux ; the solid line refers to A = 0.1 

and the dashed line to A = 0. 
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11 
Fig. 5. Plots of 0 and ?~ vs ~/for ~ = 3 x / ~ / 4  in the case of a 
constant boundary heat flux ; the solid line refers to A = 0.1 

and the dashed line to A = 0. 

A = 0.1 the dimensionless temperature O is singular 
on the boundary. Figures 3-6 reveal that, if A = 0, 
the heat flux distribution can be considered as station- 
ary for ~ > x / ~ / 4 .  

By employing the method described in the previous 
section, the compatibility of  the distributions of  0 and 
Z reported in Figs. 3 6 with the hypothesis of  local 
thermodynamic equilibrium can be analysed. In par- 
ticular, Figs. 3 and 6 show that OS/Oq and Z have an 
opposite sign in agreement with the local equilibrium 
hypothesis. On the other hand, Figs. 4 and 5 show 
that in the case A = 0.1, both for ~ = x ~ l / 2  in the 
region ~/~< 0.25 and for ~ = 3x /2~ /4  in the region 
0.5 ~< tt ~< 0.65, ~?O/~r I and Z have the same sign. This 
circumstance is in contrast with the local equilibrium 
hypothesis. 

EXPONENTIALLY DECAYING HEAT FLUX PULSE 

In this section, equations (27), (28) and (34) are 
employed to study the thermal wave propagation of  
an exponentially decaying heat flux pulse prescribed 
at the boundary of  the cylinder. Let us consider a 
time-varying boundary heat flux such that F(t) is given 
by 
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Fig. 6. Plots of ,9 and ~( vs r t for ~ = x ~  in the case of a 
constant boundary heat flux ; the solid line refers to A = 0.1 

and the dashed line to A = 0. 

Figure 5 shows that, for ~ = 3 x ~ / 4  and A = 0.1, 
both ~9 and ?~ are singular on the surface t 1 = 0.5. 
Indeed, for , ~ / 2  < ~ < x / A  a singular surface 
tt = 2~ /x f lA-  1 travels from the axis of  the cylinder to 
the boundary, this surface is singular both for the 
dimensionless temperature and for the dimensionless 
heat flux. As it is shown in Fig. 6, for ~ = ~ and 

[2 
F(t) = - - e  '"~ (49) 

16tp 2 " 

A plot of  F(t) is shown in Fig. 7. If  one defines the 
dimensionless parameter 

11 = ~t~ (50) 
4r0 

equation (49) can be rewritten as 

~2 
F(4r 2 ~/~) = ~ e -  ~/rn. (5 1 ) 

1 6 0  2 

Moreover,  equations (11) and (51) yield 

e-~ln 
qs(¢,A) = l ~ 7 [ ( l q - A ) ~ 2  +2AO¢] .  (52) 

Equation (51) implies that the heat supplied to the 
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t / ( ,  

Fig. 7. Plot ofFvs t/tp in the case of an exponentially decaying 
boundary heat flux. 
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cylinder per unit length in the time interval [0, + ~ ]  
is finite and can be expressed as 

~o + :< 
Q~ = 2~roq0 F(t') dt" = ~zr~qo H. (53) 

Since F(t) tends to zero in the limit t -~ + ~ ,  the 
temperature field is expected to reach a uniform dis- 
tribution in this limit. On account of  equation (53), a 
simple energy balance allows the evaluation of  the 
asymptotic value of  the dimensionless temperature, 
namely 

T - T 0  k Q,~ 
L i m B =  L i m k  - - H .  
. . . . . . . .  +~* roqo roqo rcropc 

(54) 

and (52), As a consequence of  equations (27) 
B(~, 03, A) is given by 

n ( 0 3 A - l )  
B(~, 03, A) - e ''~ 

8 (gol-] - -  1) 3 

e ~.'n 
4- [(03H- 1)2 ( H -  A)~ 2 

16H2 (03[I-  1) 3 

+ 2 W ( 0 3 n -  l ) (03A-  1)~-2H3(03A - 1)]. (55) 

Moreover,  equation (51) implies that 

I i F ( 4 r o ~ ' / ~ ) d d ' I I e ~ ' n _  _ 
" 8 16II (~2 + 2 H ~ + 2 H 2 ) "  

(56) 

Equations (28), (34), (51), (55) and (56) can be 
employed to evaluate the dimensionless temperature 
field and the dimensionless heat flux density dis- 
tribution inside the cylinder, namely 

e q n  
0( , ,~)  = n -  2rl (¢~+2II~4-2H2)  

- 8 
J0 (@,,) 

"=~'- J0 ( f , ) \ / l  - 16Afl~ 

×[B(~, - ; ~ , , A ) - B ( ~ , - # , , , A ) ]  (57) 

~2 
.~,'ri 

X(r/, ~) = --t/16FI 2 e 

+ 2 
"+' fl.Jo ( f . ) . / l ~  16Af~ 

× [2.B(~, - 2 . , A ) - - # . B ( ~ .  - /~ . ,A)] .  (58) 

Equation (22) implies that, for every n, Re{2.} < 0 
and Re{/~,,} < 0. so that equation (55) ensures that, 
for ~ -~ + ~ ,  B(~, - 2,, A) ~ 0 and B(~, - /~, ,  A) ~ 0. 
Therefore, equation (57) is in agreement with equa- 
tion (54). 

If  Fourier 's  law holds, i.e. in the limit A ~ 0, equa- 

tions (29) and (37) hold. Therefore, by employing 
equations (51) and (56), one obtains 

e ~;,n 
,9(~,¢) = n -  2 H - ( ~ 2 + 2 n ~ + 2 n  2) 

4-8 ~ J°(rlfl') B "~ 4 ~2 
, = l ~ ) -  re, p,,,u)~" (59) 

x(,,  ~) = 

f ~ j 

8 fn ,(qfin) B 4 2 , E , ~ =  v,,,~,,, (~, f~,0) o ~ < l  

(60) 
_ ~2  e C n  

I6H 2 ~/= 1 

In Figs. 8-11, the distributions of  # and Z as functions 
o fq  are reported for A = 1, A = 0 and H = 0.05, with 
the values of  the dimensionless time, ~ = 1/4, ~ = 1/2, 
~ = 3/4 and ~ = 1. As it is shown in the following, in 
the case A = 1, all these figures exhibit violations of  
the local equilibrium hypothesis. Figure 8 refers to 

= 1/4 and shows that, if A = 1, the thermal wave 
has not yet reached the axis. Moreover,  this figure 
reveals that, for f = 1/4 and A = 1, X and &9/@ have 
the same sign in the range 0.7 ~< ~/ ~< 1. Figure 9 refers 
to ~ = 1/2 and shows that, if  A = 1, the thermal wave 
has reached the axis, the dimensionless heat flux vector 
is directed inward for q ~< 0.65, while its direction is 
outward for 0.65 ~< ~/< 1. This figure shows that, for 

= 1/2 and A = 1, X and ~0/&/have the same sign in 
the range 0.15 ~< q ~< 0.65. Figure 10 shows that, for 

= 3/4 and A = 1. the thermal wave is travelling from 
the axis to the boundary of  the cylinder. This figure 
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Fig. 8. Plots of 0 and Z vs q for ~ = 1/4 in the case of an 
exponentially decaying boundary heat flux with H = 0.05; 
the solid line refers to A = 1 and the dashed line to A = 0. 
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Fig. 9. Plots of 0 and Z vs rl for ~ = 1/2 in the case of an 
exponentially decaying boundary heat flux with 171 = 0.05 ; 
the solid line refers to A = 1 and the dashed line to A = 0. 
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Fig. 11. Plots of ,9 and Z vs r/ for { = 1 in the case of an 
exponentially decaying boundary heat flux with FI = 0.05 ; 
the solid line refers to A = 1 and the dashed line to A = 0. 
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Fig. 10. Plots of 0 and X vs ~/for ~ = 3/r4 in the case of an 
exponentially decaying boundary heat flux with H = 0.05 ; 
the solid line refers to A = I and the dashed line to A = 0. 

reveals tha t  )~ and  ~`9/(?q have the same sign in the 
range q ~< 0.4. Moreover ,  if ~ = 3/4 and  A = 1, the 
dimensionless tempera ture  ,9 is negative for q ~< 0.15. 
As a consequence,  for q ~< 0.15, if  q0 > 0 (i.e. if the 
cylinder is heated) the tempera ture  is lower than  its 
initial value To, while if qo < 0 (i.e. if the cylinder is 
cooled) the tempera ture  is higher  than  its initial value 

T0. This effect does not  represent  a violat ion of  the 
second law, since the local equi l ibr ium scheme canno t  
be applied in this case. Finally,  Fig. 11 shows that ,  for 
~ = 1 and  A = 1, the dimensionless heat  flux vector  is 
directed inward for ~t ~< 0.75, while its direct ion is 
outward  for 0.75 ~< q < 1. This figure shows that ,  for 

= 1 and  A = 1, ~( and  0 0 / ~ / h a v e  the same sign bo th  
in the range q ~< 0.4 and  in the range 0.75 ~< q ~< 0.95. 
Figures 8-11 show that ,  for A = 0, the large-time uni- 
form dis t r ibut ions 0 = 0.05 and ~ = 0 are a t ta ined for 
~ >  1/2. 

CONCLUSIONS 

The non-s ta t ionary  heat  conduc t ion  within a solid 
cylinder with a un i form and  t ime-varying boundary  
heat  flux has been studied for a solid mater ia l  with a 
non-vanish ing  thermal  re laxat ion time. The hyper-  
bolic heat  conduct ion  equat ion  together  with  its initial 
and bounda ry  condi t ions  has been wri t ten in a dimen-  
sionless form. The dimensionless tempera ture  field has 
been determined by the Laplace t r ans form method.  
Then,  the dimensionless heat  flux has been obta ined 
by employed the local energy balance equation.  The 
case of  validity of  Four ie r ' s  law is obta ined  in the limit 
of  a vanishing thermal  relaxat ion time. The general 
solut ion is employed to analyse the case of  a cons tan t  
bounda ry  heat  flux and  the case of  an exponential ly 
decaying bounda ry  heat  flux. For  a cons tan t  bound-  
ary heat  flux, bo th  the tempera ture  field and  the heat  
flux density d is t r ibut ion are affected by singularities. 
These singularities are due to the ins tan taneous  
change of  bounda ry  heat  flux which is prescribed for 
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t = 0. It has been shown that ,  bo th  in the case of  a 
cons tan t  boundary  heat  flux and  in the case of  an 
exponential ly decaying bounda ry  heat  flux, violat ions 
of  the local equi l ibr ium hypothesis  can occur. The 
violat ions of  the local equi l ibr ium hypothesis  have 
been found by checking the sign of  the en t ropy  pro- 
duct ion rate per  unit  volume. Indeed, if at  some 
ins tant  of  t ime in some region of  the solid, the sign of  
the en t ropy  p roduc t ion  rate is negative, then the local 
equil ibrium hypothesis  canno t  be applied. 
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APPENDIX 

A function g(r/) can be expanded by a series of Bessel 
functions. In particular, the following relation holds [20] 

,q(r/) = atl + £ aJo(fi,,q) (A1) 
n - I  

where fl,, is the nth root ofJ~ (y) = 0, while a0 and a,, are given 
by 

L ao = 2 q.q(t/)dr/ a,, qg(~l)Jo(fld/)d~l. 
[J0(#, ,) l  2 , 

( A 2 )  

Let us consider the expansion of g(q) = q2. Equation (A2) 
can be rewritten as 

1 
, 2 2 I#'ry3J°O')dY" (a3) 

ao = ~ a,, fi.[Jo(fl.)] Jo 

On account of the identity [20] 

~).3 Jo (Y) dy = (y3 _ 4y)J, (y) + 2) '2 Jo (Y) (A4) 

equations (A l) and (A3) yield 

, 1 '* J°(fl"tl) (A5) 
q'- 5 = 4 ~ 

# ~ J , , ( # ° )  

Since the first derivative of function J0 is given by -J~,  
equation (A5) leads to the identity 

q = - 2  
J i  (fl,,q) 

. . . .  f i , , j o ( f i , , )  . (A6) 


